551 research outputs found

    Space-time Point Processes semi-parametric estimation with predictive measure information

    Get PDF
    In this paper, we provide a method to estimate the space-time intensity of a branching-type point process by mixing nonparametric and parametric approaches. The method accounts simultaneously for the estimation of the different model components, applying a forward predictive likelihood estimation approach to semi-parametric models

    STEM analysis of deformation and B distribution in nanosecond laser ultra-doped Si1−x_{1-x} Bx_x

    Full text link
    We report on the structural properties of highly B-doped silicon (> 2 at. %) realised by nanosecond laser doping. We investigate the crystalline quality, deformation and B distribution profile of the doped layer by STEM analysis followed by HAADF contrast studies and GPA, and compare the results to SIMS analyses and Hall measurements. When increasing the active B concentration above 4.3 at.%, the fully strained, perfectly crystalline, Si:B layer starts showing dislocations and stacking faults. These only disappear around 8 at.% when the Si:B layer is well accommodated to the substrate. When increasing B incorporation, we increasingly observe small precipitates, filaments with higher active B concentration and stacking faults. At the highest concentrations studied, large precipitates form, related to the decrease of active B concentration. The structural deformation, defect type and concentration, and active B distribution are connected to the initial increase and subsequent gradual loss of superconductivity

    Cap rock efficiency of geothermal systems in fold-and-thrust belts: Evidence from paleo-thermal and structural analyses in Rosario de La Frontera geothermal area (NW Argentina)

    Get PDF
    Cap rock characterization of geothermal systems is often neglected despite fracturing may reduce its efficiency and favours fluid migration. We investigated the siliciclastic cap rock of Rosario de La Frontera geothermal system (NW Argentina) in order to assess its quality as a function of fracture patterns and related thermal alteration. Paleothermal investigations (XRD on fine-grained fraction of sediments, organic matter optical analysis and fluid inclusions on veins) and 1D thermal modelling allowed us to distinguish the thermal fingerprint associated to sedimentary burial from that related to fluid migration. The geothermal system is hosted in a Neogene N-S anticline dissected by high angle NNW- and ENE-striking faults. Its cap rock can be grouped into two quality categories: ‱ rocks acting as good insulators, deformed by NNW–SSE and E–W shear fractures, NNE-SSW gypsum- and N-S-striking calcite-filled veins that developed during the initial stage of anticline growth. Maximum paleo-temperatures (< 60 °C) were experienced during deposition to folding phases.‱ rocks acting as bad insulators, deformed by NNW-SSE fault planes and NNW- and WNW-striking sets of fractures associated to late transpressive kinematics. Maximum paleo-temperatures higher than about 115 °C are linked to fluid migration from the reservoir to surface (with a reservoir top at maximum depths of 2.5 km) along fault damage zones.This multi-method approach turned out to be particularly useful to trace the main pathways of hot fluids and can be applied in blind geothermal systems where either subsurface data are scarce or surface thermal anomalies are lacking.Fil: Maffucci, R.. Universita Degli Studi Della Tuscia; Italia. Universita Degli Studi Roma Tre; ItaliaFil: Corrado, Sveva. Universita Degli Studi Roma Tre; ItaliaFil: Aldega, L.. Instituto de Investigaciones Universitarias Roma la Sapienza; ItaliaFil: Bigi, S.. Instituto de Investigaciones Universitarias Roma la Sapienza; ItaliaFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Salta. Instituto de Investigaciones en EnergĂ­a no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de FĂ­sica. Instituto de Investigaciones en EnergĂ­a no Convencional; ArgentinaFil: Di Paolo, L.. Eni E&P Division; ItaliaFil: Giordano, G.. Universita Degli Studi Roma Tre; ItaliaFil: Invernizzi, C.. Universita Degli Di Camerino; Itali

    Financial contagion through space-time point processes

    Get PDF
    We propose to study the dynamics of financial contagion by means of a class of point process models employed in the modeling of seismic contagion. The proposal extends network models, recently introduced to model financial contagion, in a space-time point process perspective. The extension helps to improve the assessment of credit risk of an institution, taking into account contagion spillover effects

    Effects of surface forcing on the seasonal cycle of the eastern equatorial Pacific

    Get PDF
    The roles of zonal and meridional wind stress and of surface heat flux in the seasonal cycle of sea surface temperature (SST) are examined with a primitive equation (PE) model of the tropical Pacific Ocean. While a variety of previous numerical and observational studies have examined the seasonal cycle of SST in the eastern tropical Pacific, it is noteworthy that different mechanisms have been invoked as primary in each case and different conclusions have been reached regarding the relative importance of the various components of surface forcing. Here, we perform a series of numerical experiments in which different components of the surface forcing are eliminated and the resulting upper ocean variability is compared with that of the climatological experiment. The model used for these experiments reproduces a realistic climatological seasonal cycle, in which SST emerges as an independent quantity. We find that the different cases all produce qualitatively reasonable seasonal cycles of SST, though only the most complete model is also able to reproduce the seasonal cycle of near surface currents, tropical instability waves (TIWs), and net surface heat fluxes consistent with historical observations. These results indicate that simply reproducing a qualitatively accurate seasonal cycle of SST does not necessarily allow meaningful conclusions to be made about the relative importance of the different components of surface forcing. The results described here also suggest that a model simulation must at least reproduce all the documented near surface kinematic features of the equatorial Pacific cold tongue region reasonably well, before accurate inferences can be made from model experiments. This provides useful guidelines to current efforts to develop and evaluate more complex fully coupled air-sea models and shows that results for simple or intermediate ocean models that do not have this level of fidelity to the observations will be difficult to interpret

    Supra-oscillatory critical temperature dependence of Nb-Ho bilayers

    Full text link
    We investigate the critical temperature Tc of a thin s-wave superconductor (Nb) proximity coupled to a helical rare earth ferromagnet (Ho). As a function of the Ho layer thickness, we observe multiple oscillations of Tc superimposed on a slow decay, that we attribute to the influence of the Ho on the Nb proximity effect. Because of Ho inhomogeneous magnetization, singlet and triplet pair correlations are present in the bilayers. We take both into consideration when solving the self consistent Bogoliubov-de Gennes equations, and we observe a reasonable agreement. We also observe non-trivial transitions into the superconducting state, the zero resistance state being attained after two successive transitions which appear to be associated with the magnetic structure of Ho.Comment: Main article: 5 pages, 4 figures; Supplementary materials: 4 pages, 5 figure

    The ATLAS barrel level-1 Muon Trigger Sector-Logic/RX off-detector trigger and acquisition board

    Get PDF
    The ATLAS experiment uses a system of three concentric layers of Resistive Plate Chambers (RPC) detector for the Level-1 Muon Trigger in the air-core barrel toroid region. The trigger algorithm looks for hit coincidences within different detector layers inside the programmable geometrical road which defines the transverse momentum cut. The on-detector electronics that provides the trigger and detector readout functionalities collects input signals coming from the RPC front-end. Trigger and readout data are then sent via optical fibres to the off-detector electronics. Six or seven optical fibres from one of the 64 trigger sectors go to one Sector-Logic/RX module, that later elaborates the collected trigger and readout data, and sends data respectively to the Read-Out Driver modules and to the Central Level-1 Trigger. We present the functionality and the implementation of the VME Sector-Logic/RX module, and the configuration of the system for the first cosmic ray data collected using this module

    High-speed data transfer with FPGAs and QSFP+ modules

    Full text link
    We present test results and characterization of a data transmission system based on a last generation FPGA and a commercial QSFP+ (Quad Small Form Pluggable +) module. QSFP+ standard defines a hot-pluggable transceiver available in copper or optical cable assemblies for an aggregated bandwidth of up to 40 Gbps. We implemented a complete testbench based on a commercial development card mounting an Altera Stratix IV FPGA with 24 serial transceivers at 8.5 Gbps, together with a custom mezzanine hosting three QSFP+ modules. We present test results and signal integrity measurements up to an aggregated bandwidth of 12 Gbps.Comment: 5 pages, 3 figures, Published on JINST Journal of Instrumentation proceedings of Topical Workshop on Electronics for Particle Physics 2010, 20-24 September 2010, Aachen, Germany(R Ammendola et al 2010 JINST 5 C12019

    Dependence of the energy resolution of a scintillating crystal on the readout integration time

    Get PDF
    The possibilty of performing high-rate calorimetry with a slow scintillating crystal is studied. In this experimental situation, to avoid pulse pile-up, it can be necessary to base the energy measurement on only a fraction of the emitted light, thus spoiling the energy resolution. This effect was experimentally studied with a BGO crystal and a photomultiplier followed by an integrator, by measuring the maximum amplitude of the signals. The experimental data show that the energy resolution is exclusively due to the statistical fluctuations of the number of photoelectrons contributing to the maximum amplitude. When such number is small its fluctuations are even smaller than those predicted by Poisson statistics. These results were confirmed by a Monte Carlo simulation which allows to estimate, in a general case, the energy resolution, given the total number of photoelectrons, the scintillation time and the integration time
    • 

    corecore